Improved thermal conductivity of epoxy composites via linked boron nitride nanosheets with in-situ generated silver nanoparticles

نویسندگان

چکیده

Thermal management plays an important role in electrical and electronic systems. Owing to both excellent thermal conduction insulation, boron nitride nanosheets (BNNSs) are particularly attractive as fillers polymer composites. While the properties rely on connection of BNNSs matrices significantly. Herein, absorbed with silver acetate 2-ethyl-4-methylimidazole (Ag (2E4MI) 2 Ac) complex were prepared conductive for epoxy resin. During cure matrix, nano ions in-situ reduced, sintered bridged individual together. Therefore, contact resistance between decreased conducting networks effectively constructed. The conductivity increased from 1.26 W/mK composites only 2.35 BNNS/[Ag Ac] hybrids at 20 vol% content. Fitting measured results indicated that connections by silver. In addition, electrically insulating well preserved tensile strength containing interconnects was obviously improved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical ...

متن کامل

Dielectric and thermal properties of epoxy/boron nitride nanotube composites*

We report the fabrication of and investigations into the dielectric and thermal properties of epoxy/boron nitride nanotube (BNNT) composites. It was found that BNNT fillers can effectively adjust the dielectric constant of epoxy. Moreover, the thermal conductivity of epoxy was improved by up to 69 % with 5 wt % BNNTs. Our studies indicate that BNNTs are promising nanofillers for polymers, to ob...

متن کامل

Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity

Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers...

متن کامل

Flame retarding epoxy composites with poly(phosphazene-co-bisphenol A)-coated boron nitride to improve thermal conductivity and thermal stability

Based on the template-induced self-assembly characteristic of cyclomatrix polyphosphazene micro– nanometer materials, novel poly(cyclotriphosphazene-co-bisphenol A)-coated boron nitride (PCB-BN) was designed and synthesized by in situ condensation polymerization on the surfaces of boron nitride (BN) particles using the reaction of hexachlorocyclotriphosphazene (HCCP) with bisphenol A (BPA). It ...

متن کامل

Thermal Conductivity Performance of Polypropylene Composites Filled with Polydopamine-Functionalized Hexagonal Boron Nitride

Mussel-inspired approach was attempted to non-covalently functionalize the surfaces of boron nitride (BN) with self-polymerized dopamine coatings in order to reduce the interfacial thermal barrier and enhance the thermal conductivity of BN-containing composites. Compared to the polypropylene (PP) composites filled with pristine BN at the same filler content, thermal conductivity was much higher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Polymers & Polymer Composites

سال: 2022

ISSN: ['1478-2391', '0967-3911']

DOI: https://doi.org/10.1177/09673911221110143